Insights by Danielle Fong

notes from a girl from the future

Category: Science

Green Dreams: Life in the Year of the Rabbit

I’ve lived a lifetime this year. It sometimes feels as if so much is happening that one can feel however one chooses. Yet, sometimes, life gives you so much to feel happy about you can’t help but be overwhelmed with a feeling of gratitude.

We’ve launched our new website, and finally revealed the technology that we’ve developed and we think is going to change the world — regenerative air energy storage!

LightSail set out to prove that the science of our regenerative air energy storage concept works, and we have answered that challenge with a triumphant yes!

LightSail's Industrial Scale Prototype

We built an industrial scale machine by modifying a commercial natural gas compressor. We changed the cylinder head, added nozzles, replaced valves to allow reversibility, coated the surfaces to prevent corrosion, and threw our minds and hearts at the problem of showing that our approach could dramatically increase the efficiency of compressed air energy storage. Without water spray, and without burning natural gas, previous attempts at storing energy in compressed air topped out at less than 50% thermal efficiency — ok for a backup system, but not enough to change the world. This year, we aimed at greater than 80% thermal efficiency, at a high RPM (and therefore power), to show that unlike what people had assumed, high efficiency does not mean sacrificing performance.

We met or exceeded all our technical targets — demonstrating record breaking performance at the same time as record breaking thermodynamic efficiency — conclusively demonstrating our water spray heat transfer idea behind our regenerative air energy storage concept is effective at industrial scale.

Afterglow: the day I presented to Bill Gates

We presented to Bill Gates, a limited partner in the fund that invested in us. He was super excited by the potential of our project — that if we hit our targets it would change the world.

We spoke before hundreds of policy makers and energy executives, and helped instate groundbreaking legislation supporting energy storage in California.

Governor Jerry Brown

We have settled on our ultimate product architecture and design — a huge accomplishment. We’ve got a long way to go, but our models predict our experimental results within 5% RME accuracy, so we have some real confidence that it will hit all our hoped for technical specs.

We truly defined our market and value proposition. We’re aiming to make renewables plus energy storage a better and less expensive way to provide high value peak power than what the conventional sources — natural gas peakers, diesel gensets, and extra transmission wires — can muster.

The Trillion Dollar Formula

This is an utterly enormous market; at least a trillion dollars in size over the next couple decades.

IEA Estimates of Energy Infrastructure Investment Over 2008-2030. More than 30% could be economically addressed by renewables + energy storage

We’ve found that we’re uniquely positioned to reach that target, providing the lowest levelized cost of dispatchable electricity of any source, way ahead of our competitors.

But most of all, we’re excited about changing the world. Not only does energy storage make a renewables based grid possible, it also makes it economical. That’s the key to changing the world!

We’ve been working hard to uncover the greatest, most urgent opportunities for energy storage worldwide, and the opportunities we’ve turned up are simply massive. Energy storage is just what’s needed in places as diverse as Hawaii, Texas, Ireland, California, Paris, Denmark, Iceland, Nova Scotia, New York City, Australia, Chile, Dubai, India, and Subsaharan Africa. The scale and diversity of opportunities were astonishing. The most amazing thing? The willingness of governments to put their feet forward and most towards a future that’s right. We have been cynical; we believed that only once we had a full product, a long history, and economic parity under the most conservative of assumptions would governments move. We were proven wrong. Governments are leading the world into a clean future of energy. It’s utilities that are pushing back!

Steve the Redeemer

Take Iceland — a country of stark beauty. More than 80% of the country’s electricity is exported in the form of aluminum — the processing of which is one of the most energy intensive for any widely used material in the modern world. This single industry represents 40% of the Icelandic economy.

The Hellisheidi Geothermal Plant in Iceland's Golden Circle

Essentially 100% of their grid electricity comes from their amazing geothermal and hydroelectricity resources, and an enormous amount of their heating comes from geothermal cogeneration. Iceland is a land of abundant green energy.

Gullfoss -- the golden falls.

There’s a catch, though. Transmitting power across the sparse, weatherbeaten land is an expensive, unreliable proposition, where remote locations risk being knock completely off-grid with each storm. This is worse than it seems — if power is cut to aluminum smelters, the aluminum freezes, severely damaging the equipment. To backup the geothermal and hydro plants, then, industries have had to co-locate with diesel gensets — hardly a solution in light of the self reliance and environmental commitment of the Icelanders. We intend to replace these gensets completely. But we can do a lot more.

Low-temperature geothermal heat is available nearly everywhere in Iceland, and we can harness it. By expanding air at a higher temperature (and therefore pressure and volume) than when it was compressed, we get more mechanical energy out than we needed to compress it. This allows us to convert heat energy into mechanical energy, and from there, electricity. So instead of sitting idly like backup diesel gensets, our machines can be producing clean, geothermal energy, constantly; leaving the compressed air available for bursts of power when the grid fails.

So, we met with Iceland’s Minister of Energy — a former thermodynamics professor at Lund University, who bemoaned parliament’s inability to understand the concept of exergy.

We have therefore ‘rebranded’ our efforts. From now on, we have an initiative in ‘energy quality management.’ This they understand.

He understood the implications of an economical energy storage and geothermal electric generator immediately, and urged us to consider a project in Iceland. This is exactly the sort of progressive movement that governments are making and utilities resist. But we will overcome their skepticism! Stay tuned.

Catching My First Wave - A Good Omen

Of course, it wasn’t all business. If your mission call upon you to travel, it is your duty to truly experience the place. So I took the time harness some of nature’s forces myself. After I visited the grid operator and wind farms of Hawaii, I learned to surf!

We have continued to hire and improve our utterly world class team. We’re almost 30 people now, but I can tell you I have never before seen or even imagined such a diversity interests or depth of talent in a group. I work with the most amazing people I’ve met in my life! It is amazing to see how rapidly people are growing, but even more amazing to see how much more we can accomplish as a team. There are things that we literally couldn’t do on our own given all the time in the world — we have such a diverse set of skills in the company that we can make amazing things happen.

It was our first Burning Man. Our minds were blown. It is more than a festival, more than an amazing city. It is the most spiritually profound, unashamedly sensual, and maniacally creative place I’ve ever been.

Whiteout

Offering to the Sun

Deep Playa

We travelled as the chefs of the Airship Victoria last year; an airship project that eventually intends to hoist a Tesla-coil based lightning musical instrument. The camp, directly on esplanade, next to the flaming lotus girls, the sonic cannon, the flamethrower organ, and a 24 hour bar, was a surreal experience.

The Airship Victoria

It felt like… the future! It turns out, in the future, there are lots of lights, people float around on bikes, and jellyfish hover and flow.

Wonderful. But the main thing about the future is that people can’t help but be caught in the moment.

Stargate

Our camp featured tesla-coil concerts, and there, was, admittedly, high drama before the balloons were successfully fully deployed. Despite some initial setbacks, eventually the camp lifted their payload high into the air. In a city confined to a flat lakebed, the balloons added a third dimension to the playascape.

It’s impossible to describe the sense of flow one achieves in such a dizzying storm of self expression. We danced in drum circles in the nude, rode art cars and floated glowing jelly-fish, windsurfed and found inner peace. But what was most dazzling of all was the temple.

The Temple of Transition

A strikingly elegant wooden structure, built in just 10 weeks by inspired volunteers, the temple was a deeply spiritual place of reckoning. The visitors, pilgrims of every creed, came and prayed, and made offerings for their loved ones, those who that had left them, those who they had left behind. Poems, and pictures, incense and chants, old clothes or talismans, and cherished items of every description, laid respectfully to rest, ultimately fated to return to the atmosphere aflame.

Steve was so overcome that he bent down on one knee and made an offering to his mother, a brilliant opera singer, who left the world when far too young.

I miss you so much mom. You would have loved this place. I will love you forever.

As the temple’s towers, lean and graceful, slowly surrendered to the flames, glowing sparks rose deep from the inferno, and like wisps were carried up towards the heavens. The temple of transition, once a place of cool respite, now glowed brighter than the noonday sun. The crowd gasped as a shower of blue leapt out from the flames. Someone, days before, hid fireworks that launched streams of blue from the middle of the swirling firestorm, but in that splendid moment, it was impossible not to see those glowing blue apparitions, lifted high into the glowing sky, as souls, let finally free.

Meditation, Release, a Moment of Inner Peace

Upon our return, it seemed as if the whole of LightSail met us with faces silently asking us to bring them next year! We will.

This year, we’re starting a camp — tentatively named “Cleantech”. A solar powered shower and water recovery/purification system of our own design. It will be beautiful and efficient and environmentally friendly. Our kind of project!

LightSail's Firehouse Lab

At the end of the year, having wrapped up our work at our firehouse lab, having shown all we can with our current industrial scale prototype, we moved into our new facility — the former Scharfenberger chocolate factory, in which we will design, test , and manufacture our first product line. It is an amazing space. We will do outstanding work there, and we will be happy and proud.

As the move in completed, the holidays arrived, giving us the occasion to throw a lab-warming party for our friends and family. It was absolutely amazing. I felt as if the party unfolded as a microcosm of the entire project. It began with a simple idea: “let’s have a holiday party,” which lead to the conclusion “we clearly must have it at our new space,” and from that point, it took on a life of its own, spearheaded by people of admirable competence and outstanding creativity.

We were blown away by it all. The founders had no idea! Everywhere you looked there was perfectly executed brilliance.

Enter the space, we’re greeted with placards describing what all of the work is, what each of the rooms are, how each of the items work. There were demonstrations of our tank technology, our electronics and controls, our machineshop and quality assurance, our water spray lab, and even our original prototype (built in Ed’s garage using scrap parts and ebay!) We had no idea it would be there, and were blown away to see it!

Humble Beginnings: The Original LightSail Prototype, hydraulic, quirky, built of scrap, sweat, and parts ordered off ebay.

The original machine used a hydraulic approach — slower, with less power per unit mass or cost, and with higher inefficiencies, but we conclusively proved we could control the temperature of the air during operation, and control the valves to let only an amount of air in that would expand down to 1 atmosphere — yielding the very highest efficiencies. It was a cheap, quick way to show that some of our main ideas worked, and that we could build something. We sure have come a long way from that!

Travis O’Guin and his band played an incredible set of dixieland Jazz of some of the past century’s greatest compositions (ever wonder how “hit me baby one more time” is in dixieland jazz? Amazing.) Ed broke out into dance with a series of dancers, and the LightSail toddlers couldn’t resist the beat!

Machinemaster Todd Bowers breaking it down for Professor Robert Dibble and wife Helen

The machineshop was running — demonstrations included a CNC lathe disco ball, a hula dancer shaking it to an earthquake powered by the CNC mill, and just-in-time manufacturing of LightSail Branded Bottle Openers!

Dave Sprinkle spent years in the racing industry, but it's cupcakes that bring this smile to his face...

But what really stole the party were the cupcake cars, brought in by the brilliant Keith Johnson and his merry friends Lisa Pongrace and Greg Solberg. Our partygoers insist they’re even more fun to drive than a Tesla.

It was an unbelievable way to ring-in the new year. This is going to be a great one. That everyone injected such creativity and excellence in such a gathering just shows how much people care about their work and their team and this company and how high a standard they have for themselves. It seems as if everything at LightSail is like that — our people perform at a higher level than us founders can even think to ask of them, or indeed, even to imagine.

Energy Standout of the Year

Energy Standout of the Year, Forbes 30 Under 30. Photograph by Harry Benson

To top it all off, we received coverage from none other than Forbes Magazine. I am honored to be highlighted as the standout in the field of energy in the Forbes 30 under 30 ranking! My extended family is finally less suspicious of my dropout ways. What a relief! I had a wonderful time at home with my brothers and little cousins and found to my amazement that my family had founded four businesses between us since we last visited. I guess it’s in the genes.

Christmas in Nova Scotia

This year looks to be even better. It feels like we’re reaching escape velocity.

I am honored to have been elected a mentor for the Thiel 20 under 20 Fellowship. These kids aren’t waiting to change the world, they’re just going out and doing it — I am so excited to be working with them!

I have been tapped to judge the Nova Scotia Cleantech Open, remarkable not only for being in my home province, but also for its amazing quality, rigor, and prize money ($100k free money with $200k of seed investment available.) I’m joining Matthew Nordan, of Venrock and Lux Research, whose work and judgement I have always admired greatly. His “The State of Cleantech VC is already a classic in the field.

We’re working full-speed on our product and technology, and are rallying allies across the planet to realize a wonderful number of as yet unannounced projects and partnerships.

Last year was an amazing year, but I have a feeling this one will be even better.

I am so happy to be alive at this moment in history. Great things are afoot. The winds are changing.

‘Ecopragmatist’ — Danielle Fong as interviewed by Dalhousie University

One month ago, I was interviewed by Jane Affleck as a profile piece for my Alma Mater, Dalhousie University. Unfortunately, long form responses weren’t quite what they were looking for — so I posted them here!

Jane: You “started” a PhD at Princeton… why did you stop? Was it boring? Did you feel driven to just do your own thing?

Danielle: I was more temperamentally suited towards my own thing – though that was only part of it. I entered a program in Plasma Physics to focus on fusion energy – the process that powers the sun. I thought that with a few good ideas, we could produce electricity more inexpensively than, say, planet-smothering, lung-blackening, mercury spewing coal.

Diptych - The JET Tokamak Fusion Reactor / Filled with Plasma

I guess I became disillusioned. The objective of fusion power is primarily to create a very inexpensive heat source. The reason people believed so strongly in fusion energy is that the fuel is practically free – unlike, say, coal. Unfortunately, we haven’t figured out how, even in principle, we might build a reactor that doesn’t wear out rapidly over time. Since you expend the reactor, it is most properly thought of as a kind of fuel. And if you consider the cost of ultra-high tech fusion reactors, versus pulverized coal, it looks like coal is going to be much cheaper.

I saw the technical work stretching out, endlessly before me, with no clear fix for our energy problem within sight. I got spooked.

There might be ways to solve these problems, but they certainly weren’t known.

I didn’t think the right things were getting funded. I saw my professors – brilliant scientists – spending most of their time in a struggle to acquire funding, rather than doing research. I thought there was a better way.

I came to Silicon Valley with the intention of making my fortune, and then funding research. After about nine months, I found myself compulsively doing energy research again, but this time, focusing on how to best harness and make use of energy from that great, fusion reactor in the sky, our sun.

Jane: On your Google profile, you call yourself an “ecopragmatist.” What does that philosophy mean on a day-day-basis, in your work and overall outlook?

Danielle: Environmentalism is a morality, or a philosophy. Ecopragmatics is a discipline.

Environmentalism, as a movement, achieves its greatest successes in raising awareness. Despite the fact that we live on this earth, cohabitate with nature and depend on nature for the air we breathe, the water we drink, the food we eat, the land we live on, for the microbes that pervade and defend and compose us, and despite the fact that being close to nature brings people joy, people have become strikingly unaware of their environment, of the flora and fauna within it. Environmentalists have made personal and tangible, the plight of ecosystems worldwide.

Where environmentalism fails is in its mythology; both in the mythology it has developed and promoted, and the mythology of greater society that it fails to deconstruct.

Environmentalists – and I realise I am over generalizing here — imagine that we human beings are apart from, and the scourge of, pristine nature, and that to save it, we must depart from it.

I do not believe human civilization is apart from nature in any crucial quality any different from an ant’s colony, a beaver’s dam, or a coral reef. Collective beings, using whatever tools and artifice at their disposal, have for millions of years altered their environments, and adapted to fantastically diverse environments. Our artifice is no different in kind; save perhaps, a degree of understanding and intention, and a means of development within generations, and a mechanism for sharing – language, to pass our tools between generations.

What is most astonishing about the rise of humanity is not its use of tools, not its use of language, not its environmental cultivation. It is the scope.

We have spread to almost every ecological niche of the planet. Humans consume one quarter of the enter base of the food chain, either directly or indirectly.

Less than one quarter of the world’s ice free land is wild, and only 20% of this is forests – wildlands account for only 10% of the primary production – or plant life – on the planet.

During the reign of our influence, 40% of the world’s phytoplankton, representing 20% of the world’s plant life, and 20% of the oxygen in the atmosphere, has disappeared over the past half century.

Under our influence the world has changed faster, more widely, and more profoundly than since phytoplankton drove the atmosphere from methane to oxygen. It is not that our changes are distinct from those of nature; there are plenty of creatures that change their environment far more that we change ours. But we have done so within a few hundred generations, at a planetary scale.

Pristine nature is a myth. Mankind has already profoundly changed the planet; every acre of it feels our climatic influence. We coexist. We are in nature, the question is how to live within it.

Environmentalism fails us here, because it stresses the difference of our influence, rather than its scope. Environmentalism is unwilling to consider small sacrifices which might undermine the purity of nature – hoping to preserve untouched ecologies from our desecrations, and yet even preserved land, as the famous Nature Conservancy has discovered, cannot escape our global influence. We worry about the little things; the spotted owl, the desert tortoise. And yet all around us, the world is undergoing – has undergone – a paradigm shift. As the great Paul MacCready states,

10,000 years ago, at the beginning of civilization, the human portion was less than one tenth of one percent. […] Humans, livestock and pets are now 97 percent of that integrated total mass on earth and all wild nature is three percent. We have won. The next generation doesn’t even have to worry about this game — it is over. And the biggest problem came the last 25 years: it went from 25 percent up to that 97 percent. And this really is a sobering picture in realizing we, humans, are in charge of life on earth, we’re like the capricious Gods of old Greek myths, kind of playing with life, and not a great deal of wisdom injected into it.

Nature vs Humans. Biomass of Wild Air and Land Vertebrates vs Human, Livestock, Pets

Ecopragmatism rejects the myth that the wild is endless, the oceans an infinite bounty. We recognize that the needs of mankind must coexist with the health of our planet, and that it will take sacrifices on both sides, from nature and civilization, to achieve peace – we advocate for both sides at the negotiating table. Ecopragmatism accepts that we must overcome ideology, and enforce discipline – that we must work hard, combine ecology with economy, and, as inventors and influencers, accept human nature, and create solutions that make the easy choice the right choice, allowing even the greediest or neediest of people to work toward a healthy world.

Ecopragmatism recognizes that we are now the earth’s gardeners. The earth is now shaped by our whims. We must accept the responsibility that comes with power, and consciously guide planet growth, with wisdom, courage, and decision, toward a thriving, sustainable future.

Jane: You’re the “Chief Science Officer” with LightSail Energy. What that involve? What’s a typical day for you (if there is such a thing as “typical”)?

Danielle: LightSail Energy is a green energy startup company that’s trying to make it possible, and economical, to power the world with nothing but clean, green energy. We’re tackling what some call the holy grail of green energy – how to economically and efficiency store energy such that intermittent renewables such as solar and wind can reliably and economically power our electrical grid.

Two days of output and wind speed from a four section wind farm. See the sudden drop? That's why we need energy storage if wind is to be a major part of our grid.

To do this, we’re taking compressed air, an elegant technology from a more civilized age, and using it to store energy. Compressed air is already considered to be the most inexpensive method for storing energy. Our objective is to make it more efficient.

When you compress air, what you’re really doing is converting mechanical energy into heat energy, inside the air. Conversely, when you expand air, you’re converting the heat energy in the air to mechanical energy. The amount of energy converted, for a given mass of air, is proportional to the temperature of the air.

The trouble starts when the air is compressed. To achieve a high energy density, compressed air energy storage systems compress to more than 100 times atmospheric pressure, or higher. In doing so, the air reaches extremely high temperatures, nearly 1000 C. This is too hot to manage practically, and so the air is compressed in stages, rejecting heat to the atmosphere after every stage.

By rejecting heat to the atmosphere, you lose the energy you’ve stored. Conventional systems add heat back by burning natural gas, but that still presents both a carbon footprint and inefficiency.

We have a different approach. By spraying water into the air during compression, most of the heat goes into the water, rather than the air. And water has a much higher capacity than air – 3300x at standard conditions. You don’t need to spray in much before what would have been a temperature rise of, say, 800 degrees C, becomes a temperature rise of around 20 C – much more manageable. We can then just hold on to the water, and the heat in a tank. We then spray the water back in during expansion, recovering the heat energy and converting it back into mechanical energy. We then convert the mechanical energy to electrical energy, using a motor generator.

There isn’t a very typical day at LightSail, but I often begin my day with coffee and breakfast with my cofounder, Steve Crane – a lapsed Caltech geophysicist who found himself first in the 3D graphics industry, and then the entertainment business, responsible for some of the biggest hits in history. He tried to hire me for a videogame startup; I ended up convincing him to join me as cofounder, and funding our first efforts through the sale of a house. We talk about everything. We talk about our technical challenges; the engineering and testing effort, the physics, we (try to) invent solutions to the challenge of the day, we try to figure out how to make our team as happy and effective as can be, we discuss the broader implications and applications of our technology, we talk about our philosophy, and duty as a company, and we talk about the world at large; everything from oceanography to filmmaking to dancing to the philosophy of science to the finer points of Italian cuisine. We’ve become best friends.

LightSail

Then it’s off to the lab – a converted historical Firehouse in Oakland’s Lake Merritt/Chinatown district. Our laboratories occupy the bottom two floors. In the bottommost floor we have a test cell with a control center behind bulletproof glass (just in case), a machine shop with a CNC-mill, and an assembly and quality control room. In the stable (the fire engine used to be drawn by horses) we have a laser lab for imaging sprays, and a conference room. The tower where they used to dry the canvas hoses has been converted into an exhaust manifold, outfitted with a muffler and a heat exchanger. We converted the hayloft to our electronics lab, and upstairs are our main offices.

We’re a little jam-packed in there. There are nearly 30 of us in total, so we’re moving to our new facilities (a 25,000 ft2 former chocolate factory) in October. Until then, we’ve got our design room in the fire captain’s quarters, our experimentalists, electricians and technicians in the living room/kitchen/dining area, and our CTO and third cofounder, Ed Berlin, in a bedroom he’d converted to an electrical lab. The remainder are scattered throughout the machine shop, hayloft, and much of the analysis and business team (which includes Steve and I) reside in a penthouse in a second building across the street.

(I should mention that both Steve and Ed were prodigies in physics and engineering to the same extent that I was. Steve won his first research grant at 13, and entered MIT at 16; Ed, another MIT grad, built his first circuit at 3 and won the engineer of the year award from Grumman Aerospace – a 30,000 person company, mind you, at 21. People make a big fuss about me entering college at 12, but it was mostly that I had to find somewhere other than my dysfunctional middle school after dropping out. Plenty of other people could – and have – done it.)

The heart of the company is really the test cell, and we have a ‘driver’ from the racing industry (actually he focused on dynamometer tests, never racing in a car!) running most of the full-scale system tests. There’s a desk full of screens and controls, and one graph in particular, the pressure volume curve, draws particular interest from our theorists, and passersby.

If the test cell is the heart of the company, the whiteboard in the dining room area is the head! We often start discussions there, and people will drop in as they overhear and contribute. Our technical discussions can get quite intense, and we calculate much of what we need to make decisions by hand, in real-time, to verify the contentions and work that happens at our desks. All of our management comes from a deeply technical background, we all get our hands dirty, and we all dig into things and calculate them ourselves; especially with the most important technical decisions. There’s some replicated work, true, but we’re fast, and this gets us all on the same page. It helps to have generalists!

I’ll walk around the company, checking up on progress and issues, checking in to see if I can help people do their jobs, or if people are stuck, or need someone else to do something first to make progress. We spend a lot of time making sure people understand everything, and making sure that internal communication is handled correctly – it’s hard to get 30 people on the same page all the time! To that end, we get everyone lunch on Thursdays, which we have called “stupid question day.” Everyone is encouraged to ask their stupid questions – and people are obliged to answer them graciously!

Some days, we interview candidates. Our interviews are pretty comprehensive. We give a tour and the hiring manager introduces the position and the company. For most positions, we ask that people give a presentation on their previous work/explorations/education, and we ask lots of questions. Many people interview the candidate, and in the process we give both an in-person and a take home exam. The in-person exam involves much at the whiteboard, and sometimes we get people into the lab and have them solve an experimental puzzle and describe their solution. We have a world class team; the best that any of us have worked with.

I’ll return to my own desk at some point, and answer a slew of emails. Internal communication is critical! Then, every day, I’ve made a pact to myself to do at least one hardcore engineering thing – either in analysis, or making a spec, or designing a new experimental approach, or inventing something practical.

Maybe I’ll bike back, or grab dinner with Steve or friends. The evening and night are for big picture thoughts, and maybe a little music (I love my keyboard and guitar)

Then it’s to bed, and then, another day!

Jane: Would you have imagined five years ago that you’d be where you are now (career-wise)? Why or why not?

Danielle: I always thought I’d be working on my own projects, specifically in energy, but I fluctuated between thinking I’d do it within a university or my own company. It turned out that starting a company was right for me, at this time, with what I wanted to do!

Five years is a while ago now!

Honestly, despite the challenges and struggles I remember (among them, coughing my guts out before a critical presentation for us to raise our first bit of money during the financial crisis), I was surprised that it was this easy. Or maybe easy is the wrong term. I was surprised that it felt this right, at every step. There were no agonizing decisions. I went with my gut, and I am happy where I am.

Jane: What do you remember most about Dal’s Physics and Atmospheric Science program? What do you remember most about being at Dal? (i.e., “best” memories of both)

Danielle: I brought a friend of mine to the physics phyridays one summer. He couldn’t help but exclaim, while watching the players of hacky sacky, Frisbee, soccer, etc, watching the barbeque, and the liquid nitrogen shots, that the strangest thing about physicists was how *physical* we all were.

So those are my favourite memories: my friends and classmates camping, playing games, and being happy and young and brilliant and free.

I also fondly remember working with Jordan, my advisor, who really taught me a lot about how to *think* about science, and prowling around the labs, asking what people were doing, and naively offering to help.

Also – I loved the candy room. Whoever thought of putting a candy room right next to my office is an evil genius, and I offer kudos.

Jane: What was your biggest challenge while studying Physics and Atmospheric Science? How did you overcome it?

Danielle: The biggest challenge for me was balancing the wonder and curiosity that I had for the fundamentals of physics (and whatever question happened to interest me at the moment) and staying studious. You’d hope that doing one’s homework, and trying to get at fundamentals would be equivalent, but unfortunately not. Trying to understand why processes can be thermodynamically irreversible, yet are governed by fully reversible physics, isn’t something that helps you (much) in doing homework. Nonetheless, you need to do both to really grow as a scientist. I use the knowledge in from both my more disciplined physics training I received at Dal, and my personal investigations, every day. Dal gave me a lot of freedom to explore what I wanted to explore, but being the somewhat undisciplined person I am, I still found it hard to steadily “be a good student” when other inspirations stuck me!

Jane: Do you remember any particularly encouraging advice from profs, or any who were particularly inspiring because of their research interests or their engagement with teaching/students?

Danielle: There were so many! Jeff Dahn plucked me out of the giant Physics 1100 class and introduced me to physics research. His classes were also hilarious, which helped! My advisor Jordan Kyriakidis taught me so much of what I know about the scientific method, and rational thinking in general, and then set me loose on a bunch of incredibly interesting problems – some of which still bedevil me! Stephen Payne put up with my many questions about thermodynamics, and I credit much of what I finally understood – and what I put into practice at LightSail, to him. Andrew Rutenberg encouraged me to go to graduate school, and really got me thinking about my career path. There are so many more – I really enjoyed David Tindall’s astrophysics class, and the late Masoyoshi Senba taught me much about perseverance and rigor in solving scientific problems. But many of the best teachers were my classmates – we were a really tight knit group of kids and we learned so much from each other. We had a blast too!

Jane: How did the Physics and Atmospheric Science program prepare you for your current career? (either directly or indirectly…) Or, what do you find most satisfying about your current career? What’s the most challenging thing about it, and how has your education helped you?

Danielle: I haven’t really reached a point of satisfaction. I am like a traveler on a long journey, who knows the destination is yet beyond the horizon. But I know I am headed in a good direction – that I am on a good path.

The most challenging thing is when you worry that you’re off the right path! These existential questions are the most harrowing aspect of being an entrepreneur, or an inventor. We’ve made it through all of them though, so far.

Physics taught me how deeply one needed to dig in to something before one could say that one really understood it. How tenuous our knowledge was – and is – having our system of the world reconceived by each generation of scientists, over and over again. Physics taught me both to ignore the experts, accept my own fallibility, and to keep asking questions, to keep working!

Jane: What words of encouragement would you give students thinking of applying to the Physics and Atmospheric Science program, or students who are currently enrolled in it (especially those who might be questioning their choice of major)?

Danielle: Physics is like a bootcamp for your mind; I don’t think there exists another field of study that develops such powerful and versatile mental skills. It gives us a powerful lens with which we can ask questions of the universe, and of ourselves. Physicists can, and have, gone on to make major contributions in almost every field. Physics, as a field of study, gives you freedom.

Beyond this, physics is one of the most fascinating fields of study just by itself. It satisfies some of our curiosity, but then rewards us with still greater wonder. There are still a great many mysteries yet to be solved!

Jane: What’s your greatest accomplishment so far? (in any aspect of your life – from education to career…)

Danielle: Always looking ahead, yet having fun in the present! I don’t think about the past too much; what’s fun and satisfying is the journey.

I’m really proud of the work I’ve done as an entrepreneur at LightSail Energy, but I’m just getting started – it’s not an achievement yet!

Honestly, the two proudest moments in my life were dropping out of junior high and dropping out of graduate school. I’ll always remember to listen to myself if something’s just not feeling right – and I’ll always remember to strive to find something that does. I don’t know if that qualifies as an achievement, in the common idiom, but it’s something I’m proud of.

Jane: Where do you hope to be in 5 years? In 10?

Danielle: In five years, I hope to have caused the replacement of fossil fuels sufficient to power ten thousand people. In ten, I hope to have made renewables the economical choice for almost everywhere on our planet. And I hope to have helped hundreds of young entrepreneurs follow their dreams, and strike out, toward the unknown.

Tick Tock

The clock stuck twelve. It’s October 30th. In a heartbeat I emerged an adult in the eyes of American law. In an alternate universe, I danced the night into a hazy sunrise. But I left celebration to Haight St. patrons, their addled revelry spilling muffled through the crack in my window. Tonight, we work.

Dawn, a night and two weeks later. It was ready; the design for the both the engine and the drivetrain, encoded in a scattered handful of drawings and documents, one wiki, two heads, and a thousand lines of physical simulation code. The first test: powering a scooter through a staccato ride amid frenzied Manhattan traffic, calculating, by the hundredth second, the will of the engine, and the vehicle’s reply. We’d follow a path devised to track emissions from humming, throbbing combustion engines, byproducts of fuel burnt in tiny explosions sparked every second by the thousands.

EPA New York City Cycle

But nothing save cool air would our machine exhale. Compressed air, ‘a thermomechanical battery’ of sorts, is cheap, long lasting, and quick to recharge (one need only open a valve, and if impatient, run a pump, the tank will fill in seconds.) What’s more, it’s efficient. A batteries charge begins life in mechanical form, in a spinning turbine if charged off the grid, or in the inertia of a vehicle, during regenerative braking. This is then converted into AC electrical current, which is converted into DC current, which, finally, is converted into mechanical energy, losing power at each step. To power the engine this whole process runs in reverse! But compressing or expanding air keeps mechanical energy mechanical (so long as temperature is kept reasonably constant.) In powering vehicles it is superior to the most advanced battery systems known. That is, in every parameter but one.

Historically, the low energy density of compressed air had crippled any attempt to venture further than a couple dozen miles; physics, it seemed, demanded tanks of excessive proportions to travel longer. At 300 bar (‘scuba pressure’), compressed air could release only half a percent as much energy as the same volume of gasoline burnt. We understood, however; it was an efficiency war. We knew that conventional vehicles were incredibly wasteful. There were many battles left to fight.

The Laws of Thermodynamics1

“You can’t win.”
“You can’t break even.”
“You can’t give up.”

We hunted losses relentlessly. We were repaid with a series of compounding improvements, each building upon another, reversing the conventional patterns of efficiency losses endured by vehicles for more than a century. Finally, in a brilliant and unusually compact layout by Steve Crane, we found room to replace the paltry 1.3 gallon gas tank with one ten times its size. Nights yielded to our toil, and, slowly but surely our enemy routed.

“We’ve cracked the code,” we exclaimed. “The city is ours to conquer.” On the highway, whatever benefit earned by our scooter’s light weight, low rolling resistance and ultra-efficient regenerative braking would be dominated by air resistance.2 But air resistance falls quickly with speed, and in the stop-start motion of the city our combined inventions would give our scooter an efficiency historically unmatched.

I keyed in the last few drivecycle parameters, drew a shallow breath, cocked my head, and pressed the enter key. The simulation lasted only a moment, but in that time, my little scooter ran more than one hundred and twenty miles, the equivalent of dozen rides between Wall Street and the Bronx on a single tank. “We’re in business,” I said. With that, and for all of a New York Minute, the questions, worries and restlessness retreated from our hearts. We huffed. “What’s next?”

[1]: To paraphrase C. P. Snow. Hat tip to Jonathan Smith.

[2]: Scooters are not particularly aerodynamic vehicles. Ordinary scooters have a drag coefficient of nearly 0.9, and a frontal area of 0.6 meters squared. We hope to achieve a drag coefficient of 0.6, similar to faired motorcycles ridden upright, but due to the rider’s position this will be difficult: some have described the aerodynamics of a scooter as like a “brick attached to a parachute.”

Reconstruction of Data from a Chart or Graph

I have here several charts of driving cycles. These are standard plots derived from real traffic data, of velocity versus time. Unfortunately I cannot find the data anywhere. So I hatched a plan: maybe there’s software that will reconstruct data from a graph or chart? Does anyone know? If not, I’ll just write it myself and open source it. It seems like a generally useful thing in engineering and science. It deserves an application (maybe even a web application).

Unified California Drivecycle

Timelessness

Many believe that technology simply gets better over time: that every class of invention can improve endlessly into modernity. That is not so. Most of the hard constraints on technology are imposed by physical or mathematical laws. These remain constant. Those who truly understand this may work, instead of towards the solution of individual problems, towards timelessness, and the ideal platonic form.

Wheel, Iran, from 2nd Millenium, BCE

Excavated at Choghazanbil Ziggurat, near Susa, late 2nd Millenium BCE.

Living Things

analogies, once preserved as mere notes, find harmony as poetry

organizations
relationships
communities

as living entities

as where no one cell holds the soul of a person
no one person, incarnate
may form all essence of a community
nor live throughout its lifetime
wholly part

as one cell expires
one soul retires
others, some new, fill their place

generations cycle
yet something remains
an living entity unto itself
though it may be true
that some people or ideas
resemble vital organs

the liver, to filter
the stomach, to process
the lung, to supply
the mind, to direct
the heart, to power

too often
transplanted,
perfectly good hearts
from one being to another
from one community to another
raise immune reactions
edicts like allergens
mobs like histamines

without disarmament
no transplant succeeds
no hire, restructuring, or revolution carried through
without somehow disabling
or surviving
societal antibodies

for some, it seems
while becoming part of a great organization
or movement
or organism
they enter through digestive tracts
to supply the raw stuff
the best
carbon, iron, calcium, oxygen
skills, goals, ideas, selves
are prepared
and cooked
chewed
dissolved
filtered
processed
and made, finally, into a part of something new
to fit some other master plan
a genetic blueprint
an ideology
a mission
a politic

for some
no greatness of which they are part
could come to redefine them
their raw stuff
the parts comprising
can find no better molecule
no further local minima
no structure more solid
between surrounding stomach walls
they are indigestible

or too delicate
too beautiful
too unique
to be eaten

their soul to realize
as part only whole
of something profound,
meaningful,
believed in
or as the kernel of a gem
of another body
of an essence of its own
starting anew

Keeping Prediction Honest

I base my action upon prediction. Every technologist should. I try to see how the world will be, and then try and see within that future what place I may come to hold.

So prediction is fundamentally at the heart of a technologist’s work. At the highest level, we must predict to find what work focus on, and what future to aim for.

You might then think that prediction, as a skill, is worthy of practice. And practice it gets. In living rooms, in pubs and classrooms and yearbooks and dial-in talkshows and newspapers and blogs and comment threads and slashdot and every polluted corner of our existence, you find evidence: prediction is practiced all the time.

There’s a problem. In most areas of the technologist’s pursuit, it’s easy to see whether you’ve done well. Code should compile. Planes should fly. Cars should go. Bridges should stay up. We have a lot of honesty in our discipline, much of it because we are blessed with tests that we find hard to fool.

A typical test for predictions, on the other hand, is whether the story sounds good at the pub. You make some exclamation. People nod and clap. Everyone forgets.

This would be fine if you’re just looking for some conversation. But if you are, like technologists fundamentally in the business of creating the future, it becomes lot more troublesome. We are left to ignore predictive incompetence until reality slaps us coldly across the face. We are flying blind.

Taking a cue from Trevor Blackwell, I’ve decided to inject some rigor into my life: when I make predictions, instead of casting them abstractly into the air, I’ll post them here: einfall.slinkset.com. (edit: embarrassingly, slinkset is down, and I do not have an archive. Archive.org to the rescue! http://web.archive.org/web/20090510010305/http://einfall.slinkset.com/) And I won’t delete my predictions — if they turn out wrong, I’ll keep them there, as permanent reminders to learn from.

Through accountability, honesty. Through honesty, improvement.

Thanks to Trevor Blackwell for the inspiration, and John and Brett from Slinkset for the List Hosting.

Notes: a friend of mine noted that most of my predictions seem ‘pessimistic’, in the sense that they take the form of ‘X will not Y.’ I would have to agree with him. But this is largely a byproduct of how these predictions were made – they’ve come from studying some field, working in it for a while, and coming to the creeping realization that one or more of the current approaches were doomed. Besides, much of the skill of experts comes from the ability to ignore false trails.

Further Reading: An excellent site for major predictions (often with significant wagers) is Long Bets.

The Choice of Work

During the back and forth of exchange with a technical recruiter, he finally asked me what I was looking for. And so the floodgates opened.

This may sound weird, but I pretty much choose employment based on the promise of quality work. Other factors fade into irrelevance.

When I say quality of work, I mean more than the work environment, more than the magnitude of technical challenges, and more than the IQ of those I’d be working with. I want the opportunity to walk paths with the greatest hope of leading to first-class work. Nobel-prize winning kind of work.1 This force guides me, and so inevitably I tend upstream of technological change. Money and prestige are mere proxies for what I really want: to develop and inspire fundamental changes in the way people live. That doesn’t mean I need tackle the greatest problems humanity now faces (yet). What matters is that I, personally, have a reasonable approach. So I must always remind myself to, as Richard Hamming says, ‘plant the little acorns from which the mighty oak trees grow’ — because small projects can, swiftly and strikingly, grow momentum and value.1

I find little value in submitting myself to some company culture. I instead mean to develop my professional values, ambitions, and goals: for example, I would like to develop new methods, make them available by open sourcing them and make them popular by evangelizing them. I’d love to be given the chance to teach what I’ve learned. Excellent people bring ideas and perspective to a communities of makers. Given time, I think this will evolve naturally into a company culture worth having.

Most big companies grow faster than they could build trust, to a size greater than strong values can be supported. Natural culture is the product of alignment of creative philosophies, and in BigCo, this is too often replaced with virtual company nationalism. Fascism even. I find this is more than distasteful. I haven’t really learned how to work within it at all. I could devote my efforts to such an organization only were there deeply meaningful work to be done. And why bother?

Paul Buchheit's first Google Check.

Angling to be upstream of technological change, I bait unusual questions and find surprising answers. Give me the choice between a VP position at a big five media company with oodles of benefits, and, say, work at an early netscape or google for a totally minimal salary, and I’ll choose the latter every time. I’m pulled towards organizations where I can learn about organizing, rather than learning about institutional tradition. It’s not important for me to learn about how to run a large organization: if ever I do, I won’t follow of the paths of current captains of industry. Instead, I intend to help grow large, leaderless, open organizations, and so I’d do almost anything for a chance to work with Caterina Fake, or Linus Torvalds.

I want to work on something I find deep personal meaning in. I strongly believe in supporting open culture. I don’t think I’d work for long in games or entertainment unless it could influence some social change. I worked at MochiMedia because it made possible an income stream for small independent developers where none existed before. This finally opened up professional game development from BigCos. Now, much innovation in gaming emerges from bedroom studios. Independent game developers can now commit to their art in a way they before could not.

Similarly, I’d work at YouTube rather than Hulu, even though one’s a startup and the other isn’t, because they’re more interested in involving everyone in the process. As Clay Shirky says, they’re interested in ‘finding the mouse’.

I want to work somewhere where I can truly make a difference. Why am I working in technology at all? Archimedes once said, ‘If you give me a lever and a place to stand, I can move the world.’ Technology is my lever. I need only find place to stand. This makes me wary of startups that try to do good, but aren’t particularly focused on doing it efficiently. I wouldn’t work for most charities. There’s too little pressure on them to focus — the tempering influence of market competition is replaced by government demands for ‘accountability’, which arn’t nearly so powerful.

There are numerous ‘ecogreen’ websites out there that try to promote simple, green ways of living. These may be virtuous, however, in terms of minimizing environmental impact I think they’re somewhat irrelevant.2 Saving plastic bags won’t lift a toe on our carbon footprint unless we find ways to either cut down on air and automobile travel, or do it more efficiently. And on carbon footprints — global warming is, I think, a red herring — there are thousands of nasty effects of pollution from, say, coal-fired power plants that will hit even if global warming doesn’t occur (though I think, probably, it will). Too much of China now wears breathing masks.3

I can see myself dedicating myself to the right company, so long as our goal, philosophies, and ambitions align. Yet these are stringent requirements. So far, then, I’ve found it necessary to reserve some energy and time for my own projects. So I must be open with companies: with most, I want only consulting work, to help them with some particular project, idea or problem. And I want to be completely, totally honest with everyone about it, because so far, the high road has never let me down.

Sincerely,
Danielle

———

Notes:

[1] – From the classic talk by Richard Hamming, You and Your Research. I don’t, particularly, apologize for my ambition here. Why shouldn’t I try to do first class work? The Nobel prize winning part is purely incidental. But this is the kind of work I mean — a significant contribution, one that people can build upon.

[2] – The free, online book Sustainability – Without the Hot Air is an excellent read. It is the first thing I’d suggest to someone interested in seriously starting into environmental matters. I shouldn’t claim that small contributions to green living are completely irrelevant — each does have some small effect. Perhaps raising the issue of green living in our collective consciousness will have an effect greater at second order than I imagined. But so many of our behaviors are misplaced. Many people, for example, go out of their way to buy ‘sustainable’ products at Whole Foods, say, when in reality, longer vehicle trips do more damage than almost anything you could buy. Many things are sold in a way to make you feel good about buying them. They don’t have any real effect!

[3] – This is worded provocatively, but pollution in China is a growing catastrophe. See ‘As China Roars, Pollution Reaches Deadly Extremes’ and ‘Where Breathing is Deadly’.

———


Thanks to Alex Lang, Ma’ayan Bresler, Nick Pilon, Colin Percival, Michael Nielsen, and Joel Muzzerall for reading drafts of this, and Charles Beatty, for sparking it.

PS: Certain misconceptions have been raised. Some feel that this is one demand of an over privileged generation. I reply to this here. Additionally, I am not, in fact, abandoning my startup. But I do need money, and a visa, so I am looking into either employment or seed funding.

Cosmology in Ten Minutes

Recently, unusual features of the cosmic microwave background, a ‘snapshot’ of the early universe, have raised issues with our understanding of the Big Bang. A Caltech team has shown how we might fix our theories. They suggest that there might have been an asymmetry in the energy that once powered the big bang. If this is correct, anomalies in the CMB may be traces of structure from a time before our explosive beginnings.

True to form, when a discussion appeared on Hacker News I rushed to comment, and this article erupted from that attempt. The current scientific understanding of our cosmic origins is a mystery to the public at large, but it was only after I noticed the bewilderment of my fellow hackers that I realized how poor a job we scientists have done in conveying the motivation behind our discoveries.

This article represents an attempt to replace that sense of bewilderment with that of wonder. I want more than to explain what cosmologists believe. I want give people a deep sense of why we believe it, of how we’ve come to our current understanding, and of why we care.

Look close, and it seems the universe is lopsided.

The cosmic microwave background (CMB) is like a snapshot of the early universe. It was once all hot plasma, gas so hot that the atoms inside it were broken up. Because it was hot, it emitted light. Because it was dense, it was opaque: the light emitted couldn’t just pass through, instead it had to bounce around. But once cool enough, the universe became transparent: all the light could now travel freely. It was as if the photographic shutter of the universe was lifted.

The Cosmic Microwave Background Radiation (from WMAP). False Color/ The light from this moment became the cosmic microwave background radiation. Because the universe seemed to have cooled at almost exactly the same time everywhere, the CMB is, unlike almost everything else in astronomy1, a picture of the entire universe at almost exactly the same moment in time. It is the best picture we have of the structure of the early universe.

The universe appears to have expanded evenly since then. We know it’s expanding now. Light is like a wave. Since the speed of light is constant, an illuminated object moving towards us has its wave crests squish together, turning bluer, and an object moving away from us has the distance between crests expand, turning more red. This is called a red shift. Since he knew the colors of certain celestial objects, Edwin Hubble was able to observe that the further something is from us, the more red-shifted its light, and therefore the faster it is speeding away.

Since we know that the early universe was hot, dense and small, and we know now that it’s cooler, sparse, big, and expanding, we can reasonably deduce that, long ago, there was a Big Bang. The universe exploded.

The Crab Nebula Strikingly, the CMB is almost the same everywhere you look. There are minor fluctuations, but even they seem to have the same distribution everywhere. The CMB, our best picture of the early universe, is extraordinarily smooth. It is one of the smoothest things ever observed in nature. This might not seem like a mystery. You might imagine that anything expanding, hot and dense would look roughly the same in all directions. It needn’t. Nebulae are formed by exploding stars, and they aren’t particularly smooth. In fact, in nature, it would seem, more often than not, that explosions are messy.

In 1981, Alan Guth suggested what might be called a ‘recipe for a universe’: inflation theory. Until then, nobody had come up with any good ideas for why the universe was so smooth and even. It is as if God2 had pressed the entire universe with a cosmic clothes iron.

Guth said, suppose you started with pretty much any initial universe. Suppose you also had an extremely strong, extremely smooth field of energy. If this field started dumping energy into the rest of the universe, it would also evenly expand space itself.3 The universe would undergo a period of exponential expansion — inflation — having the effect of flattening and smoothing the rest of the universe. Inflation is God’s clothing iron.

A flat, smooth universe isn’t the only thing that inflation predicted. For example, at small physical scales, quantum mechanical fluctuations persist. During inflation these fluctuations are blown up as well, and these would seed, almost entirely, the cosmological structure of the universe. We see these fluctuations in the CMB. According to inflation, they are tiny quantum fluctuations blown up to a cosmic scale. They are, quite literally, the ancestors of our galaxies.

It wasn’t just that there were fluctuations. Inflation theory predicted a very specific distribution and type4. When people finally had the technological capability to check, that’s just what they found. The universe appeared, at a cosmic scale, astonishingly consistent with this simple theory. Yet recently our observational capacities have improved. A CMB survey called WMAP has uncovered several surprising and unexplained features, not all of which fit well with the our previous inflation theories.

If you divided the sky in half by tracing the orbit of the earth around the sun5, and compared, in each half, the size of big fluctuations, those between 3 and 5 degrees wide, you would come to the conclusion that one side has fluctuations outweighing the other by an alarmingly large amount. One side of the universe is bumpier than the other. Moreover, the difference is larger than would be accounted for by randomness, at least 99 times out of 100.6

This asymmetry looks real. It has been checked against every known experimental error and background effect astrophysicists have been able to think of. And if it is real, our previous inflation theories, with one field of energy to inflate the early universe, won’t work. They can’t account for this anomaly.

The authors Erickcek, Kamionkowski, and Carroll don’t merely point out this problem. They posit a solution. They describe another inflation model, consistent with our new observations. They suggest the universe had not one, but many fields of universe inflating energy. There’s just one problem. At least one of these fields needs to be asymmetric.

Where could such an asymmetry come from? It is possible that we’ll never know. Cosmology offers us the hope of uncovering consistent, compelling stories of our origins. Thousands of independent observations fit neatly in cosmology’s book. But while we may discover a few lost pages from our first chapters, we may never know all reasons why our book was written in the first place.7

Nevertheless, the authors make an exciting point. Wherever the asymmetry in the inflation field came from, it must have existed before inflation. It must have existed before the big bang. We had once imagined that time before our explosive beginnings would forever remain a mystery. Yet hidden in the CMB are hints of times earlier still. In this wonderful piece of work, the authors carefully consider what anomalies in the CMB could mean. And in the process, they may have discovered a way to look farther into the past than ever before.

Notes:

[1] – Since light moves at a finite speed, when we see something far away, we’re seeing light emitted in the past. What we see of something a light-year away is (at least) one year old.

[2] – I mean ‘God’ here as in a figure of speech. Feel free to substitute ‘Mother Nature’, ‘Allah’, or the ‘Flying Spaghetti Monster’ while reading.

[3] – What does it mean, exactly, for energy to expand space itself? It’s roughly analogous to blowing up a balloon. We know that the gravity of the universe, just like the elastic outside walls of a balloon, pull its contents inward. In a balloon, air pressure pushes against that inward force of the walls. During cosmic inflation, the inflationary force pushes against gravity. There’s one important difference though. We don’t actually know what the inflationary force is. Air blows up our balloons, but we have few clues as to what blew up the universe.

[4] – The quantum fluctuations predicted by inflation follow a nearly-scale-invariant random Gaussian distribution. These fluctuations show up in the CMB, and for the most part follow these predictions pretty closely.

[5] – The line dividing the two halves of the sky here is called the ecliptic.

[6] – Formally, this statement is true at at least the 99% confidence level.

[7] – There are some questions forever beyond our grasp. Even if we knew from where the Big Bang had come, we could always probe further, and ask where that came from.

On Outliers: What they represent, and why the Central Limit Theorem is Typically Off.

A Bell Curve

The central limit theorem states that if you have many small, independent, random variables, then their sum is distributed approximately as a bell curve. Strikingly, almost everything is made up of many small parts, and these parts don’t tend to influence each other very much.

So much of what can measure seems to fit a bell curve. This is why the normal distribution works. Because this assumption tends to work well, it is usually taken as a matter of course. Students are taught it, lecturers preach it, researchers apply it, and startlingly few stop to question it.

Suppose the variables are not small, or suppose they’re not independent. Suppose, under certain conditions, the value of one variable would seriously affect another. Suppose we’re talking about the buildup of snow on a mountain slope. Most of the time, snowflakes can gradually build, without significant effect. But once enough builds, you don’t find snowflakes resting calmly upon a drift. What you find is an avalanche.

Violent nonlinearities...

The sum total of snowflake movement isn’t what we might expect. The snowflakes on the top used to be lightly packed by the new, gradually coming down. The snowflakes on the bottom used to just sit there. But they’re not just sitting there. They’re moving fast, and they’re moving down.

Read the rest of this entry »

Quantum Field… Finance?

One morning around the graduate college dining hall, there was a gathering of physicists, finance students, and economists. The physicists are always quite amazed by those people who decide to forgo the life of the ivory tower, and choose to strike out into the real world, and so could not be kept from asking what the economists actually did. Furthermore, we could not be kept from wondering aloud what type of mathematical models they built and polished, and whether any of them had a physical interpretation.

One of the economists scratched his head, drew a sip of black coffee from his porcelain cup, and mumbled something about how a large proportion of the physics department of Harvard University was hired by a trading company, with the lure of riches beyond the pale of the meager imaginings of the physicists (“you mean I can afford a house?!”).

Read the rest of this entry »